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Linear independence of dilogarithmic values

Carlo Viola and Wadim Zudilin

Abstract

We establish the linear independence over Q, in both qualitative and
quantitative forms, of the four numbers 1, Li1(1/z) = − log(1−1/z), Li2(1/z)
and Li2(1/(1− z)), for all integers z ≥ 9 or z ≤ −8 and for rationals z = s/r
or z = 1− s/r with 1 < r < s, where s is large in comparison with r.

1 Introduction

Problems of irrationality and linear independence of values of the dilogarithmic
function

Li2(x) : =

∞∑
n=1

xn

n2
, |x| < 1,

have a long history. The latest news in this direction is given in the work [RV] of
G. Rhin and the first-named author, where the best records of irrationality of the
dilogarithm at positive rational points are established, in both qualitative and
quantitative forms. The results in [RV] are more general, and can be interpreted
as linear independence results over Q for the set 1, Li1(x) : =

∑∞
n=1 x

n/n =
− log(1− x) and Li2(x), for suitable x ∈ Q, x > 0.

In [RV], Rhin and the first-named author adapted their permutation group
method successfully used earlier to obtain record irrationality measures of ζ(2)
and ζ(3). The method allowed them to improve some earlier results of M. Hata
[Ha1], in particular to show that 1, Li1(1/z) and Li2(1/z) are linearly independent
over Q for any integer z ≥ 6. The principal players in [RV] are the following
integrals:

Mathematics Subject Classification (2010): 11J72 (primary); 11J82, 33B30, 33C60 (sec-
ondary).
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I(0)z (h, j, k, l,m) = z−l−m

1∫
0

1∫
0

xj(1− x)hyk(1− y)l

(x(1− y) + yz)j+k−m+1
dx dy,

I(1)z (h, j, k, l,m) = z−l−m

1∫
0

(
1

2πi

∮
∣∣∣y− x

x−z

∣∣∣=�

xj(1− x)hyk(1− y)l

(x(1− y) + yz)j+k−m+1
dy

)
dx,

I(2)z (h, j, k, l,m) =
z−l−m

2πi

∮
|x−z|=σ

(
1

2πi

∮
∣∣∣y− x

x−z

∣∣∣=�

xj(1− x)hyk(1− y)l

(x(1− y) + yz)j+k−m+1
dy

)
dx,

for any �, σ > 0, and

(1.1) Iz(h, j, k, l,m) = I(0)z (h, j, k, l,m)− (log z) I(1)z (h, j, k, l,m),

where z is assumed to be real and greater than 1, and where the parameters
h, j, k, l, m are non-negative integers. In (1.1), the role of the double integral

I
(1)
z (h, j, k, l,m) of mixed type (i.e., made over the real interval (0, 1) in x and
over a complex contour in y) is essential to separate linear forms in 1 and Li2(1/z)
from those in 1 and Li1(1/z) (see [RV, Theorem 2.1]). A similar structure occurs
in the present paper, and to achieve this result we build upon Theorem 2.1 of
[RV] (see the proof of Lemma 2.1 below).

In his doctorate thesis [Mi, Chap. 4], M.-A. Miladi establishes the linear in-
dependence over Q of

1, Li1

(1
z

)
= −Li1

( 1

1− z

)
, Li2

(1
z

)
and Li2

( 1

1− z

)
,

for any integer z ≥ 11 (hence for any integer z ≤ −10 as well). His construc-
tion was highly influenced by the works [Ha1, Ha3] of M. Hata, though he re-
quired different techniques to evaluate the asymptotics of numerical linear forms
so constructed. The Padé-type approximations Miladi constructed depend on two
parameters and have a symmetry under the involution z ↔ 1− z.

The structure of Miladi’s Padé-type approximations is similar to the one in
[RV] reproduced above, except that his integrands (in his notation) are

xn2(1− x)n2yn1(1− y)n2−n1

(x(1− y) + yz)n2+1
(1− y + yz)n1 ,

where n2 ≥ n1 > 0 are integers.

The principal aim of this paper is to extend the Rhin–Viola permutation group
method to integrals of Miladi’s type, which will depend below on six rather than
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two parameters, in order to establish new linear independence results over Q for
the set 1, Li1(1/z), Li2(1/z), Li2(1/(1− z)), in both qualitative and quantitative
forms. We shall prove the following

Main theorem. For any integer z ≥ 9 or z ≤ −8, the numbers

1, Li1(1/z), Li2(1/z) and Li2(1/(1− z))

are linearly independent over Q. Furthermore, for any ε > 0 and any quadruple
(a0, a1, a2, a3) ∈ Z4 \ {0}, the inequality

|a0 + a1 Li1(1/z) + a2 Li2(1/z) + a3 Li2(1/(1− z))| > C(ε, z)A−μ(z)−ε

holds for some explicitly given exponent μ(z) > 0, where

A = max{|a0|, |a1|, |a2|, |a3|}

and the constant C(ε, z) > 0 does not depend on the quadruple.

We remark that Miladi was unable to get the full power even of his two-
parametric construction, because of quite involved computation of the asymp-
totics of the approximations; specifically, he uses n1 = �n/3� and n2 = n − n1,
where n > 0 is the increasing integer parameter. Miladi himself states on pp. 86–
87 of [Mi] a ‘Remarque Importante’, where he claims that his result about the
linear independence of 1, Li1(1/z), Li2(1/z) and Li2(1/(1 − z)) over Q might be
improved to the range z ≥ 8 by choosing n1 = �3n/8� and n2 = n − n1. This is
partly true: we now confirm the range z ≥ 9 under the choice.

D.V. and G.V.Chudnovsky announce in [CC] the same linear independence
result as Miladi’s, for the same range z ≥ 11, though they give no details of
their construction besides a lengthy recursion satisfied by approximations. This
recursion in fact allows one to check that their approximations coincide with those
of Miladi for the choice n1 = �n/3� and n2 = n− n1.

We obtain the proof of the Main theorem stated above as a special case of our
Proposition 6.1, which yields linear independence results of 1, Li1(1/z), Li2(1/z),
Li2(1/(1− z)) not only for integers z, but also for rationals z = s/r, with integers
1 < r < s where s is large in comparison with r. Specifically, as an instance
of this, we prove the Q-linear independence, also in quantitative forms, of 1,
Li1(r/s), Li2(r/s), Li2(−r/(s− r)) for r = 2 and s ≥ 143, for r = 3 and s ≥ 742,
and for r = 4 and s ≥ 2355. Similarly to [RV, formulae (5.27) and (5.29)], such
results for r ≥ 2 rely on the formula

(1.2) δ − α− β = h+ j − l
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(see (2.1) below) relating the degree δ of the polynomials occurring in the linear
forms with the degree α+β of the factor zα(1−z)β , repeatedly used in our results
yielding the arithmetical structure of the linear forms, e.g., in Lemma 2.1. As a
consequence of (1.2), the constant c3 used in our Proposition 6.1 turns out to be
independent of the degree δ of the polynomials involved, and this independence
is crucial to treat the cases z = s/r with r ≥ 2.

The present paper is organised as follows. In Section 2 we define, for z > 1,

the double integrals J
(0)
z , J

(1)
z and J

(2)
z , similar to the above integrals I

(0)
z , I

(1)
z

and I
(2)
z but containing the factor (1−y+yz)j+q−m of Miladi’s type, and we prove

an arithmetical structure result (Lemma 2.1) for such integrals. We also apply to

J
(μ)
z (μ = 0, 1, 2) a birational change of variables ((2.5) below) which simplifies

the analytic structure of the integrals, and allows us to define J
(0)
z also for z < 0.

The symmetry of J
(1)
z and of J

(2)
z under the involution z ↔ 1 − z is also proved

(see Lemmas 2.2 and 2.3), while the symmetry property for J
(0)
z under z ↔ 1− z

is subtler, and involves a new double integral K
(0)
z of mixed type (Lemma 2.4).

In Section 3 we show that the permutation group method applies to the in-

tegrals J
(μ)
z and K

(0)
z , and we do this by means of a further birational change

of variables ((3.2) below), and by the hypergeometric integral transformation
already used in [RV, Section 3].

In Section 4 we apply Hata’s saddle point method in C2 and we get the

required asymptotic formulae for J
(μ)
z and K

(0)
z , where the integer parameters h,

j, k, l, m, q are replaced by hn, jn, kn, ln, mn, qn with n → ∞.
In Section 5 we introduce some arithmetical lemmas yielding the linear in-

dependence over Q and a Q-linear independence measure of 1, γ1, . . . , γS , where
γ1, . . . , γS ∈ R, under suitable asymptotic formulae, as n → ∞, for linear forms

qnγμ − p(μ)n ∈ Zγμ + Z (μ = 1, . . . , S)

and for their common coefficients qn.
Finally, in Section 6 we combine the permutation group method developed in

Section 3 with the arithmetical lemmas in Section 5, together with the asymptotic
formulae in Section 4, and we obtain the Q-linear independence results stated
above for 1, Li1(1/z), Li2(1/z) and Li2(1/(1− z)), in qualitative and quantitative
forms.

It is our pleasure to thank G. Rhin for providing us with the text of Miladi’s
thesis [Mi] (for which he happened to be in the committee) and G.F. Gronchi for
creating for us Figure 1.

4



2 Rational approximations to Li1 and Li2

Let z ∈ R, z > 1.

2.1

For integer parameters h, j, k, l, m, q ≥ 0 such that j+k−m, j+q−m, h+m−k
and h+ q − k are also ≥ 0, define the double integrals

J (0)
z = zk−l−q

1∫
0

1∫
0

xj(1− x)h yk(1− y)l(
x(1− y) + yz

)j+k−m+1
(1− y + yz)j+q−m dx dy,

J (1)
z = zk−l−q

×
1∫

0

(
1

2πi

∮
∣∣∣y− x

x−z

∣∣∣=�

xj(1− x)h yk(1− y)l(
x(1− y) + yz

)j+k−m+1
(1− y + yz)j+q−m dy

)
dx

and

J (2)
z = zk−l−q

× 1

2πi

∮
|x−z|=σ

(
1

2πi

∮
∣∣∣y− x

x−z

∣∣∣=�

xj(1− x)h yk(1− y)l(
x(1− y) + yz

)j+k−m+1
(1− y + yz)j+q−m dy

)
dx,

where �, σ > 0 are arbitrary, and also set

Jz = J (0)
z − (log z)J (1)

z ,

where log z is the real value of the logarithm. The quantities so defined clearly
generalise (apart from the normalisation factor zk−l−q in place of z−l−m) the

corresponding families I
(μ)
z (μ = 0, 1, 2) and Iz in [RV], which are reproduced in

the introduction.
In what follows, the notation dn is used for the least common multiple of

1, 2, . . . , n.

Lemma 2.1. Let

(2.1)

H = max{l + q, h+m− k, h+ j − l, j + k −m},
H ′ = max{l + q, min{h+m− k, h+ j − l}, j + k −m},
α = max{0, l + q − k, l + q −m},
β = max{0, k + l − h},
δ = α+ β + h+ j − l.
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Then

(2.2)
dHdH′zα(1− z)β Jz = P (z)−Q(z) Li2(1/z),

dHdH′zα(1− z)β J (1)
z = R(z)−Q(z) Li1(1/z),

where

P (z), Q(z), R(z) ∈ Z[z], max{deg P (z), deg Q(z), deg R(z)} ≤ δ.

Moreover

(2.3) dHdH′zα(1− z)β J (2)
z = Q(z).

Proof. Applying the binomial theorem, in two different ways, to the factor

((1− y) + yz)j+q−m = (1 + y(z − 1))j+q−m

in the definitions of J
(μ)
z (μ = 0, 1, 2), we obtain

J (μ)
z =

j+q−m∑
λ=0

(
j + q −m

λ

)
zj+k+λI(μ)z (h, j, k + λ, j + l + q −m− λ, m+ λ)

=

j+q−m∑
λ=0

(
j + q −m

λ

)
zk+m−q+λ(z − 1)λI(μ)z (h, j, k + λ, l, m+ λ),

where the integrals I
(μ)
z are defined in the introduction. We now apply Theo-

rem 2.1 of [RV]: either of the above representations of J
(μ)
z can be used to get

the expressions for H and H ′; the former representation leads to the expression
for α, while the latter yields the formula for β.

Concerning δ, let α1, β1 and δ1 be the integers defined in [RV, formula (2.9)]
and denoted therein by α, β and δ, respectively. By [RV, Lemma 2.8] we have in
any case

(2.4) δ1 − α1 − β1 = h− k − l.

From the latter representation of J
(μ)
z we get

dHdH′zα(1− z)βJ (μ)
z =

j+q−m∑
λ=0

(−1)λ
(
j + q −m

λ

)
dHdH′zk+m−q+λ+α(1−z)λ+βI(μ)z (h, j, k+λ, l, m+λ),
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and applying again Theorem 2.1 of [RV] to I
(μ)
z (h, j, k + λ, l, m + λ) and using

(2.4), we see that the degrees of the polynomials P (z), Q(z) and R(z) do not
exceed

max
0≤λ≤j+q−m

(k +m− q + λ+ α+ λ+ β + h− k − λ− l) = α+ β + h+ j − l = δ.

2.2

In what follows, we use the notation Z to denote either the number z > 1, or the
number 1− z < 0. Our next goal is to extend the families of integrals defined in
Subsection 2.1 to the latter case Z = 1− z < 0.

Clearly, the quantities

J
(1)
Z = Zk−l−q

×
1∫

0

(
1

2πi

∮
∣∣∣y− x

x−Z

∣∣∣=�

xj(1− x)h yk(1− y)l(
x(1− y) + yZ

)j+k−m+1
(1− y + yZ)j+q−m dy

)
dx

and

J
(2)
Z = Zk−l−q

× 1

2πi

∮
|x−Z|=σ

(
1

2πi

∮
∣∣∣y− x

x−Z

∣∣∣=�

xj(1− x)h yk(1− y)l(
x(1− y) + yZ

)j+k−m+1
(1− y + yZ)j+q−m dy

)
dx

are well defined for both Z > 1 and Z < 0. This is not the case of J
(0)
z : if

Z = 1− z < 0 we cannot define J
(0)
Z in a similar manner, because for Z < 0 the

denominator x(1− y)+ yZ vanishes along a segment of hyperbola inside the unit
square (0, 1) × (0, 1) ⊂ R2. In order to avoid this difficulty, we use a different
representation for the double integrals above. We apply the change of variables

(2.5)

⎧⎪⎨⎪⎩
x = ξ

y =
η

η − Z
.

We begin with J
(0)
z . For Z = z > 1, (2.5) changes the integration path [0, 1)

for y to [0,−∞) for η. Thus we get

J (0)
z = (−1)k+l+q

1∫
0

ξj(1− ξ)h
( −∞∫

0

ηk(1− η)j+q−m

(ξ − η)j+k−m+1(η − z)l+q+1
dη

)
dξ.
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Take any ζ ∈ C such that |ζ| = 1, 0 < arg ζ < 2π. For every 0 < ξ ≤ 1, the inner
integral is unchanged if we rotate the integration path [0,−∞) by moving it to
the half-line [0, ζ∞) going from 0 to ∞ through ζ. To see this, let for brevity

ϕξ(η) : =
ηk(1− η)j+q−m

(ξ − η)j+k−m+1(η − z)l+q+1
.

Since ξ > 0 and z > 0, the function ϕξ(η) is holomorphic for 0 < arg η < 2π, as
well as in a neighbourhood of η = 0. By Cauchy’s theorem we get, for any � > 0,

−�∫
0

ϕξ(η) dη =

�ζ∫
0

ϕξ(η) dη +

∫
μ�

ϕξ(η) dη,

where μ� is the arc {|η| = �, arg η from arg ζ to π}. As � → +∞ we have

(2.6)

∣∣∣∣ ∫
μ�

ϕξ(η) dη

∣∣∣∣ ≤ �k(�+ 1)j+q−m

(�− 1)j+k−m+1(�− z)l+q+1
· 2π� � �−l−1 −→ 0,

whence
−∞∫
0

ϕξ(η) dη =

ζ∞∫
0

ϕξ(η) dη.

Thus, for any ζ as above,

(2.7) J (0)
z = (−1)k+l+q

1∫
0

ξj(1− ξ)h
( ζ∞∫

0

ηk(1− η)j+q−m

(ξ − η)j+k−m+1(η − z)l+q+1
dη

)
dξ.

We will now show that the double integral (2.7) converges absolutely, so that
the integrations in ξ and η can be interchanged. We split the half-line [0, ζ∞) as
[0, ζ] ∪ (ζ, ζ∞), whence

1∫
0

ξj(1− ξ)h
( ζ∞∫

0

∣∣ϕξ(η)
∣∣ |dη|)dξ

=

1∫
0

ξj(1− ξ)h
( ζ∫

0

∣∣ϕξ(η)
∣∣ |dη|)dξ +

1∫
0

ξj(1− ξ)h
( ζ∞∫

ζ

∣∣ϕξ(η)
∣∣ |dη|)dξ.
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Let 0 ≤ ξ ≤ 1, η ∈ [0, ζ], and let ϑ = arg ζ. If π/2 ≤ ϑ ≤ 3π/2 we clearly have
|ξ − η| ≥ max{ξ, |η|}, and if 0 < ϑ < π/2 or 3π/2 < ϑ < 2π a picture shows that
|ξ − η| ≥ max{ξ | sinϑ|, |η| | sinϑ|}. Since ϑ = arg ζ is fixed and different from 0
and 2π, we get in any case, writing |η| = u,

1∫
0

ξj(1− ξ)h
( ζ∫

0

∣∣ϕξ(η)
∣∣ |dη|)dξ(2.8)

�
1∫

0

1∫
0

ξj(1− ξ)h uk(u+ 1)j+q−m

(max{ξ, u})j+k−m+1(z − u)l+q+1
dξ du

�
1∫

0

1∫
0

ξjuk

(max{ξ, u})j+k−m+1
dξ du

=

1∫
0

ξj

ξj+k−m+1

( ξ∫
0

ukdu

)
dξ +

1∫
0

uk

uj+k−m+1

( u∫
0

ξjdξ

)
du

=
1

k + 1

1∫
0

ξmdξ +
1

j + 1

1∫
0

umdu � 1.

For 0 ≤ ξ ≤ 1, η ∈ (ζ, ζ∞), we have min{|ξ−η|, |η−z|} ≥ |η| if π/2 ≤ ϑ ≤ 3π/2,
and min{|ξ − η|, |η − z|} ≥ |η| | sinϑ| if 0 < ϑ < π/2 or 3π/2 < ϑ < 2π. In any
case

ζ∞∫
ζ

∣∣ϕξ(η)
∣∣ |dη| � ζ∞∫

ζ

|η|k(|η|+ 1)j+q−m

|η|j+k−m+l+q+2
|dη|

=

+∞∫
1

uk(u+ 1)j+q−m

uj+k−m+l+q+2
du �

+∞∫
1

u−l−2du =
1

l + 1
,

whence
1∫

0

ξj(1− ξ)h
( ζ∞∫

ζ

∣∣ϕξ(η)
∣∣ |dη|)dξ � 1.

This proves the absolute convergence of the double integral (2.7) for any ζ ∈ C

satisfying |ζ| = 1, 0 < arg ζ < 2π.

9



For any such ζ, the right-hand side of (2.7), viewed as a function of the
complex variable z, is plainly holomorphic in the cut plane

Πζ : = C \[0, ζ∞).

In particular, for any Z < 0 and any ζ ∈ C with |ζ| = 1 and Im ζ 
= 0, we can
define

(2.9) J
(0)
Z = (−1)k+l+q

1∫
0

ξj(1− ξ)h
( ζ∞∫

0

ηk(1− η)j+q−m

(ξ − η)j+k−m+1(η − Z)l+q+1
dη

)
dξ,

since Z ∈ Πζ . From (2.7) we have

J
(0)
z = (−1)k+l+q

1∫
0

ξj(1− ξ)h
( ζ∞∫

0

ηk(1− η)j+q−m

(ξ − η)j+k−m+1(η − z)l+q+1
dη

)
dξ.

Thus for every Z < 0 we get two values of J
(0)
Z , conjugate to each other, one given

by (2.9) for Im ζ > 0, and the other for Im ζ < 0. If Im ζ > 0 (resp. Im ζ < 0),
by analytic continuation we can move continuously in (2.7) from z = 1 − Z > 1
to z = Z < 0 along a path contained in the half-plane Im z < 0 (resp. Im z > 0),
since such a path does not cross the cut [0, ζ∞). Accordingly, for Z < 0 we define

JZ = J
(0)
Z − (logZ)J

(1)
Z ,

where, by analytic continuation, we take

(2.10) logZ =

{
log |Z| − πi, if in J

(0)
Z we have Im ζ > 0

log |Z|+ πi, if in J
(0)
Z we have Im ζ < 0.

We now turn to J
(1)
Z and J

(2)
Z . In order to apply the substitution (2.5) to

such integrals, where Z can be either > 1 or < 0, we interchange the integrations

in x and y. For J
(1)
Z , let λ denote a fixed contour in C enclosing the open real

interval (0, 1/(1− Z)) if Z < 0, or (1/(1− Z), 0) if Z > 1, and passing through
the endpoints 0 and 1/(1 − Z). Then λ encloses the point x/(x − Z) for any x
such that 0 < x < 1. Therefore

J
(1)
Z = Zk−l−q

1∫
0

(
1

2πi

∮
λ

xj(1− x)h yk(1− y)l(
x(1− y) + yZ

)j+k−m+1
(1− y + yZ)j+q−m dy

)
dx

= Zk−l−q 1

2πi

∮
λ

( 1∫
0

xj(1− x)h yk(1− y)l(
x(1− y) + yZ

)j+k−m+1
(1− y + yZ)j+q−m dx

)
dy.
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The open interval of endpoints 0 and 1/(1−Z) for y corresponds through (2.5) to
the open interval (0, 1) for η. Applying (2.5), the contour λ is transformed into a
contour for η, which we denote by Γ0,1, enclosing (0, 1) and passing through the
endpoints 0 and 1. We easily get

(2.11) J
(1)
Z = (−1)k+l+q 1

2πi

∮
Γ0,1

( 1∫
0

ξj(1− ξ)h ηk(1− η)j+q−m

(ξ − η)j+k−m+1(η − Z)l+q+1
dξ

)
dη.

The absolute convergence of the double integral (2.11) in the neighbourhood of
the points ξ = η = 0 and ξ = η = 1 where the factor (ξ − η)j+k−m+1 vanishes,
and hence the above interchange of integrations, are justified by the argument
used in (2.8), provided the tangents to the contour Γ0,1 at the points η = 0 and
η = 1 are distinct from the real line.

For a fixed contour Γ0,1 as above, the right-hand side of (2.11) is clearly a
one-valued analytic function of the complex variable Z, holomorphic in the open
part of C not enclosed by Γ0,1. Taking Γ0,1 symmetric with respect to the real

line, i.e., Γ0,1 = Γ0,1, from (2.11) we get J
(1)
Z = J

(1)

Z
. Hence for any z > 1 we have

J
(1)
z ∈ R and J

(1)
1−z ∈ R.

Concerning J
(2)
Z , we have |x− Z| = σ if and only if |x/(x− Z)− 1 | = |Z|/σ.

Hence the contour | y−x/(x−Z) | = � in the integral defining J
(2)
Z can be replaced

by |y − 1| = � provided �σ > |Z|, since under this assumption the circumference
|y−1| = � encloses the point x/(x−Z) for any x such that |x−Z| = σ. After this
replacement, we may interchange the integrations over |x−Z| = σ and |y−1| = �.
It follows that

J
(2)
Z = Zk−l−q

× 1

2πi

∮
|y−1|=�>0

(
1

2πi

∮
|x−Z|=σ>|Z|/�

xj(1− x)h yk(1− y)l(
x(1− y) + yZ

)j+k−m+1
(1− y + yZ)j+q−m dx

)
dy

= Zk−l−q

× 1

2πi

∮
|y−1|=�

(
1

2πi

∮
∣∣∣x− yZ

y−1

∣∣∣=σ

xj(1− x)h yk(1− y)l(
x(1− y) + yZ

)j+k−m+1
(1− y + yZ)j+q−m dx

)
dy,

where in the last double contour integral we may take any �, σ > 0. When
y describes the circumference |y − 1| = � in the positive sense, the point η =
yZ/(y − 1), corresponding to y through (2.5), describes |η − Z| = |Z|/� in the
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negative sense. Thus, applying (2.5) we obtain

(2.12) J
(2)
Z = (−1)k+l+q+1

× 1

2πi

∮
|η−Z|=�1

(
1

2πi

∮
|ξ−η|=�2

ξj(1− ξ)h ηk(1− η)j+q−m

(ξ − η)j+k−m+1(η − Z)l+q+1
dξ

)
dη,

for any �1, �2 > 0. By applying twice Cauchy’s integral formula in (2.12), first

to the integral in ξ and then to the integral in η, we easily get J
(2)
Z ∈ Z[Z], with

deg J
(2)
Z = h+ j − l if h+ j − l ≥ 0, or with J

(2)
Z identically zero if h+ j − l < 0.

2.3

We denote the above integrals J
(μ)
Z by J

(μ)
Z (h, j, k, l,m, q) (μ = 0, 1, 2).

Lemma 2.2. We have

J
(1)
1−Z(j, h, j + q −m, l, h+ q − k, q) = (−1)l+1J

(1)
Z (h, j, k, l,m, q).

Proof. By (2.11),

J
(1)
1−Z(j, h, j + q −m, l, h+ q − k, q)

= (−1)j+l+m 1

2πi

∮
Γ0,1

( 1∫
0

ξh(1− ξ)j ηj+q−m(1− η)k

(ξ − η)j+k−m+1(η − (1− Z))l+q+1
dξ

)
dη,

where the contour Γ0,1 may be taken symmetric about the point 1/2. We apply
the change of variables

(2.13)

{
ξ = 1− ξ̂

η = 1− η̂.

Passing from ξ to ξ̂, (2.13) changes the orientation of [0, 1] and changes dξ to
−dξ̂, and from η to η̂ (2.13) preserves the orientation of Γ0,1 and changes dη to
−dη̂. Therefore

12



J
(1)
1−Z(j, h, j + q −m, l, h+ q − k, q)

= (−1)j+l+m+1 1

2πi

∮
Γ0,1

( 1∫
0

ξ̂j(1− ξ̂)h η̂k(1− η̂)j+q−m

(η̂ − ξ̂)j+k−m+1(Z − η̂)l+q+1
dξ̂

)
dη̂

= (−1)k+q+1 1

2πi

∮
Γ0,1

( 1∫
0

ξ̂j(1− ξ̂)h η̂k(1− η̂)j+q−m

(ξ̂ − η̂)j+k−m+1(η̂ − Z)l+q+1
dξ̂

)
dη̂

= (−1)l+1J
(1)
Z (h, j, k, l,m, q).

Similarly,

Lemma 2.3. We have

J
(2)
1−Z(j, h, j + q −m, l, h+ q − k, q) = (−1)l J

(2)
Z (h, j, k, l,m, q).

Proof. By (2.12),

J
(2)
1−Z(j, h, j + q −m, l, h+ q − k, q) = (−1)j+l+m+1

× 1

2πi

∮
|η−(1−Z)|=�1

(
1

2πi

∮
|ξ−η|=�2

ξh(1− ξ)j ηj+q−m(1− η)k

(ξ − η)j+k−m+1(η − (1− Z))l+q+1
dξ

)
dη.

Again we apply (2.13), which changes the contours |η−(1−Z)| = �1 and |ξ−η| =
�2 respectively to |η̂−Z| = �1 and |ξ̂− η̂| = �2, with the same orientations. Thus

J
(2)
1−Z(j, h, j + q −m, l, h+ q − k, q)

= (−1)j+l+m+1 1

2πi

∮
|η̂−Z|=�1

(
1

2πi

∮
|ξ̂−η̂|=�2

ξ̂j(1− ξ̂)h η̂k(1− η̂)j+q−m

(η̂ − ξ̂)j+k−m+1(Z − η̂)l+q+1
dξ̂

)
dη̂

= (−1)k+q+1 1

2πi

∮
|η̂−Z|=�1

(
1

2πi

∮
|ξ̂−η̂|=�2

ξ̂j(1− ξ̂)h η̂k(1− η̂)j+q−m

(ξ̂ − η̂)j+k−m+1(η̂ − Z)l+q+1
dξ̂

)
dη̂

= (−1)l J
(2)
Z (h, j, k, l,m, q).

For Z = z > 1 or Z = 1 − z < 0, the change of variables (2.13) yields also a

transformation formula relating J
(0)
Z (h, j, k, l,m, q) with J

(0)
1−Z(j, h, j + q −m, l,

h + q − k, q). However this formula involves a further double integral which we

13



denote by K
(0)
Z , and we define by

(2.14) K
(0)
Z = K

(0)
Z (h, j, k, l,m, q)

= (−1)k+l+q

∫
γ0,1

( 1∫
0

ξj(1− ξ)h ηk(1− η)j+q−m

(ξ − η)j+k−m+1(η − Z)l+q+1
dξ

)
dη,

where γ0,1 is an arc from 0 to 1 contained either in the upper half-plane Im η > 0,
or in the lower half-plane Im η < 0, with tangents at the endpoints η = 0 and
η = 1 distinct from the real line. Again by the argument in (2.8), already used to
prove the absolute convergence of (2.11), we see that the double integral (2.14)
converges absolutely. For Z ∈ R, Z > 1 or Z < 0, the two values obtained for

K
(0)
Z , corresponding to Im γ0,1 > 0 or to Im γ0,1 < 0, are clearly conjugate to each

other. Also, from (2.11) and (2.14) we get, for Z > 1 or Z < 0,

(2.15) J
(1)
Z = ± 1

2πi

(
K

(0)
Z −K

(0)
Z

)
= ± 1

π
ImK

(0)
Z ,

with the + sign (resp. − sign) if in K
(0)
Z we have Im γ0,1 < 0 (resp. Im γ0,1 > 0).

Lemma 2.4. The following equality holds:

(2.16) J (0)
z (h, j, k, l,m, q) + (−1)l J

(0)
1−z(j, h, j + q −m, l, h+ q − k, q)

= K(0)
z (h, j, k, l,m, q),

where in K
(0)
z (h, j, k, l,m, q) we take Im γ0,1 < 0 (resp. Im γ0,1 > 0) if in J

(0)
1−z(j,

h, j + q −m, l, h+ q − k, q) we have Im ζ > 0 (resp. Im ζ < 0).

Proof. For z > 1 we have, by (2.9),

J
(0)
1−z(j, h, j + q −m, l, h+ q − k, q)

= (−1)j+l+m

1∫
0

ξh(1− ξ)j
( ζ∞∫

0

ηj+q−m(1− η)k

(ξ − η)j+k−m+1(η − (1− z))l+q+1
dη

)
dξ,
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where we take, e.g., Im ζ > 0. Applying (2.13) we get

J
(0)
1−z(j, h, j + q −m, l, h+ q − k, q)

= (−1)j+l+m

1∫
0

ξ̂j(1− ξ̂)h
(∫

L

η̂k(1− η̂)j+q−m

(η̂ − ξ̂)j+k−m+1(z − η̂)l+q+1
(−dη̂ )

)
dξ̂

= (−1)k+q

1∫
0

ξ̂j(1− ξ̂)h
(
−
∫
L

η̂k(1− η̂)j+q−m

(ξ̂ − η̂)j+k−m+1(η̂ − z)l+q+1
dη̂

)
dξ̂,

where L, the image of (0, ζ∞) through (2.13), is the half-line from 1 to ∞ parallel
to (0,−ζ∞) in the lower half-plane Im η̂ < 0. By virtue of (2.6) we obtain, for
an arc γ0,1 from 0 to 1 with Im γ0,1 < 0,

J
(0)
1−z(j, h, j + q −m, l, h+ q − k, q)

= (−1)k+q

1∫
0

ξ̂j(1− ξ̂)h
( ∫

γ0,1

η̂k(1− η̂)j+q−m

(ξ̂ − η̂)j+k−m+1(η̂ − z)l+q+1
dη̂

−
−ζ∞∫
0

η̂k(1− η̂)j+q−m

(ξ̂ − η̂)j+k−m+1(η̂ − z)l+q+1
dη̂

)
dξ̂

= (−1)l K(0)
z (h, j, k, l,m, q) + (−1)l+1J (0)

z (h, j, k, l,m, q),

since, for z > 1, (2.7) holds independently of the sign of Im ζ. The result is
exactly the required equality.

Lemma 2.5. We have

(2.17) K
(0)
1−Z(j, h, j + q −m, l, h+ q − k, q) = (−1)l K

(0)
Z (h, j, k, l,m, q),

with the same integration path γ0,1 on both sides of (2.17).

Proof. We remark that the image through (2.13) of an arc γ0,1 from 0 to 1 in the
half-plane Im η > 0 is an arc from 1 to 0 in the half-plane Im η̂ < 0. Thus if we
apply the substitution (2.13) directly to

K
(0)
1−z(j, h, j + q −m, l, h+ q − k, q)

= (−1)j+l+m

1∫
0

ξh(1− ξ)j
( ∫

γ0,1

ηj+q−m(1− η)k

(ξ − η)j+k−m+1(η − (1− z))l+q+1
dη

)
dξ,
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the same computation as above yields

K
(0)
1−z(j, h, j + q −m, l, h+ q − k, q)

= (−1)k+q

1∫
0

ξ̂j(1− ξ̂)h
( ∫

γ0,1

η̂k(1− η̂)j+q−m

(ξ̂ − η̂)j+k−m+1(η̂ − z)l+q+1
dη̂

)
dξ̂,

and (2.17) follows.

Finally, we set

KZ = KZ(h, j, k, l,m, q)

= JZ(h, j, k, l,m, q) + (−1)l J1−Z(j, h, j + q −m, l, h+ q − k, q).

By expanding the definitions of JZ and J1−Z on the right-hand side of this ex-
pression in the case Z = z > 1, and applying (2.10) and Lemma 2.4, we get the
following result.

Lemma 2.6. For z > 1 we have

Kz(h, j, k, l,m, q) = K(0)
z (h, j, k, l,m, q)− (log z) J (1)

z (h, j, k, l,m, q)

− (log(1− z)) (−1)l J
(1)
1−z(j, h, j + q −m, l, h+ q − k, q),

with the convention

log(1− z) =

{
log |1− z| − πi, if in K

(0)
z we have Im γ0,1 < 0

log |1− z|+ πi, if in K
(0)
z we have Im γ0,1 > 0.

3 The permutation group

3.1

Lemma 3.1. The quantities

J
(μ)
Z (h, j, k, l,m, q) (μ = 0, 1, 2), K

(0)
Z (h, j, k, l,m, q),

KZ(h, j, k, l,m, q) and JZ(h, j, k, l,m, q)

are invariant under the action of the permutation

ν = (h j)(k m)

which acts identically on l and q.
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Proof. By absolute convergence, we can write (2.9) in the form

(3.1) J
(0)
Z (h, j, k, l,m, q)

= (−1)k+l+q

ζ∞∫
0

ηk(1− η)j+q−m

(η − Z)l+q+1

( 1∫
0

ξj(1− ξ)h

(ξ − η)j+k−m+1
dξ

)
dη,

where Z ∈ Πζ can be either z > 1 or 1 − z < 0, and apply to the inner integral

the involution ξ ↔ ξ̃ given by

(3.2) ξ = η
ξ̃ − 1

ξ̃ − η
.

For each η ∈ R \ [0, 1], (3.2) changes the interval [0, 1] for ξ into the interval [0, 1]
for ξ̃ (from 1 to 0), and for each η /∈ R (3.2) changes the interval [0, 1] for ξ into
an arc of circumference going from 1 to 0 in the plane of the complex variable ξ̃.
It is easily seen that, for 0 < ξ < 1, Im ξ̃ and Im η have opposite signs. Thus, for
each η ∈ (0, ζ∞) in (3.1), after the change of variable (3.2) the integration path
for ξ̃ can be moved by Cauchy’s theorem to the real interval [0, 1] (from 1 to 0)
without encountering η. Hence (3.2) yields

J
(0)
Z (h, j, k, l,m, q) = (−1)l+m+q

ζ∞∫
0

ηm(1− η)h+q−k

(η − Z)l+q+1

( 1∫
0

ξ̃h(1− ξ̃)j

(ξ̃ − η)h+m−k+1
dξ̃

)
dη

= J
(0)
Z (j, h,m, l, k, q).

The same argument holds for each η ∈ Γ0,1 in (2.11), or for each η ∈ γ0,1 in (2.14).

This shows that J
(0)
Z (h, j, k, l,m, q), J

(1)
Z (h, j, k, l,m, q) andK

(0)
Z (h, j, k, l,m, q) are

invariant under the action of the permutation ν from the statement of the lemma.

We get the same conclusion for J
(2)
Z (h, j, k, l,m, q) given by (2.12), since, for any

fixed η with sufficiently small |η − Z| = �1, the substitution (3.2) changes the
contour |ξ − η| = �2, described by ξ in the positive sense, to |ξ̃ − η| = �̃2, where

�̃2 = |η(1 − η)|/�2, described by ξ̃ in the negative sense. Thus J
(0)
Z , J

(1)
Z , J

(2)
Z ,

K
(0)
Z , and hence also JZ and KZ , are invariant under the action of ν.

To the inner integrals in ξ appearing in (2.11), (2.12), (2.14) and (3.1) we can
also apply the hypergeometric transformation as in [RV, Section 3]. The result is

Lemma 3.2. The quotients

J
(μ)
Z (h, j, k, l,m, q)

h! j!
(μ = 0, 1, 2),

K
(0)
Z (h, j, k, l,m, q)

h! j!
,
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and hence
KZ(h, j, k, l,m, q)

h! j!
and

JZ(h, j, k, l,m, q)

h! j!
,

are invariant under the action of the permutation

ϕ = (h h+m− k)(j j + k −m)(k m),

which also acts identically on l and q.

Proof. By [RV, formula (3.3)] we have

1∫
0

ξj(1− ξ)h

(ξ − η)j+k−m+1
dξ =

(
− 1

η

)j+k−m+1
1∫

0

ξj(1− ξ)h(
1− ξ

η

)j+k−m+1
dξ

=
(
− 1

η

)j+k−m+1 h! j!

(h+m− k)! (j + k −m)!

1∫
0

ξj+k−m(1− ξ)h+m−k(
1− ξ

η

)j+1
dξ

=
h! j!

(h+m− k)! (j + k −m)!
(−η)m−k

1∫
0

ξj+k−m(1− ξ)h+m−k

(ξ − η)j+1
dξ,

and similarly, by [RV, Lemma 3.1],

1

2πi

∮
|ξ−η|=�2

ξj(1− ξ)h

(ξ − η)j+k−m+1
dξ

=
h! j!

(h+m− k)! (j + k −m)!
(−η)m−k 1

2πi

∮
|ξ−η|=�2

ξj+k−m(1− ξ)h+m−k

(ξ − η)j+1
dξ.

From (2.11), (2.12) and (3.1) we get

J
(μ)
Z (h, j, k, l,m, q) =

h! j!

(h+m− k)! (j + k −m)!

× J
(μ)
Z (h+m− k, j + k −m, m, l, k, q) (μ = 0, 1, 2),

and from (2.14)

K
(0)
Z (h, j, k, l,m, q) =

h! j!

(h+m− k)! (j + k −m)!

×K
(0)
Z (h+m− k, j + k −m, m, l, k, q).

This shows that the quotients in the statement of the lemma are all invariant
under the action of the permutation ϕ.
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3.2

The following lemma extends Lemma 2.1 to the case Z = 1 − z < 0, and also
improves the expression for H ′ by making use of the permutation ν in Lemma 3.1.

Lemma 3.3. Let Z > 1 or Z < 0, and let

(3.3)

H = max{l + q, h+m− k, h+ j − l, j + k −m},
H ′ = max{l + q, max′{h+m− k, h+ j − l, j + k −m}},
α = max{0, l + q − k, l + q −m},
β = max{0, k + l − h, l +m− j},
δ = α+ β + h+ j − l,

where the second successive maximum max′ of a multi-set is defined as in [RV,
p. 417]. Then

dHdH′Zα(1− Z)βJZ(h, j, k, l,m, q) = P (Z)−Q(Z) Li2(1/Z),

dHdH′Zα(1− Z)βJ
(1)
Z (h, j, k, l,m, q) = R(Z)−Q(Z) Li1(1/Z),

where

P (Z), Q(Z), R(Z) ∈ Z[Z], max{degP (Z), degQ(Z), degR(Z)} ≤ δ.

Moreover
dHdH′Zα(1− Z)βJ

(2)
Z (h, j, k, l,m, q) = Q(Z).

Proof. From the results in Subsection 2.2 it follows that the integrals J
(μ)
Z (μ =

0, 1, 2) are analytic functions of the complex variable Z. More precisely, J
(0)
Z is

holomorphic for Z ∈ Πζ = C \ [0, ζ∞), J
(1)
Z is holomorphic for Z ∈ C \ [0, 1],

and J
(2)
Z is an entire function of Z (in fact, a polynomial). Therefore, by analytic

continuation, the formulae (2.2) and (2.3) of Lemma 2.1 remain valid in the whole
domain of holomorphy of the integrals appearing in each formula.

By Lemma 3.1, JZ , J
(1)
Z and J

(2)
Z are invariant under the action of the per-

mutation ν, and plainly the integers in (3.3) are also invariant under the action
of ν. Since the integer β appearing in (2.1) does not exceed the β defined in
(3.3), Lemma 2.1 implies that the conclusion of Lemma 3.3 holds if we take for
H ′ either the value

max{l + q, min{h+m− k, h+ j − l}, j + k −m}
in (2.1), or the value

max{l + q, min{j + k −m, h+ j − l}, h+m− k}
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obtained by applying ν to the previous one. Therefore Lemma 3.3 holds with the
least of the two values above, i.e., with the H ′ appearing in (3.3).

Note that α, β and δ in (3.3) are invariant under the actions of both permu-
tations ν and ϕ, while we have to further modify the definitions of H and H ′ to
have them invariant under ϕ, by taking

H = max{l + q, h, j, h+m− k, h+ j − l, j + k −m},
H ′ = max{l + q, max′{h, j, h+m− k, h+ j − l, j + k −m}}.

They happen to be invariant under the permutation

(h j)(k j + q −m)(m h+ q − k)

induced by the transformation Z ↔ 1 − Z in Lemmas 2.2–2.5, and this permu-
tation interchanges the values of α and β in (3.3). By combining the results of
Subsections 2.3, 3.1 and Lemma 3.3, as well as the identities

Li1(1/Z) + Li1(1/(1− Z)) = 0 and Li2(1/Z) + Li2(1/(1− Z)) = −1
2 Li1(1/Z)2,

we arrive at the following general statement.

Proposition 3.1. Let

H = max{l + q, h, j, h+m− k, h+ j − l, j + k −m},
H ′ = max{l + q, max′{h, j, h+m− k, h+ j − l, j + k −m}},
α = max{0, l + q − k, l + q −m},
β = max{0, k + l − h, l +m− j},
δ = α+ β + h+ j − l.

Then

dHdH′zα(1− z)βJz(h, j, k, l,m, q) = P1(z)−Q(z) Li2(1/z),

(−1)ldHdH′zα(1− z)β

×J1−z(j, h, j + q −m, l, h+ q − k, q) = P2(z)−Q(z) Li2(1/(1− z)),

dHdH′zα(1− z)βKz(h, j, k, l,m, q) = P (z)−Q(z)
(− 1

2 Li1(1/z)
2
)

and

dHdH′zα(1− z)βJ (1)
z (h, j, k, l,m, q) = R(z)−Q(z) Li1(1/z),
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where

Q(z) = dHdH′zα(1− z)βJ (2)
z (h, j, k, l,m, q)

= (−1)ldHdH′zα(1− z)βJ
(2)
1−z(j, h, j + q −m, l, h+ q − k, q),

P1(z), P2(z), P (z) = P1(z) + P2(z) and R(z) are polynomials with integer coeffi-
cients and degrees not exceeding δ. Moreover, the quotients

Q(z)

h! j!
,

P1(z)

h! j!
,

P2(z)

h! j!
,

P (z)

h! j!
and

R(z)

h! j!

are invariant under the actions of the permutations

ν = (h j)(k m) and ϕ = (h h+m− k)(j j + k −m)(k m).

4 Asymptotics

4.1

Let

(4.1) f(ξ, η) = fZ(ξ, η) =
ξj(1− ξ)h ηk(1− η)j+q−m

(ξ − η)j+k−m(η − Z)l+q
.

We require information on the asymptotic behaviour of the above double integrals
of

f(ξ, η)n
dξ dη

(ξ − η)(η − Z)
,

for fixed h, j, k, l, m, q and for n → +∞. For this purpose we can use Hata’s
saddle point method in C2 [Ha4, Section 1]. We seek the stationary points of
f(ξ, η) satisfying ξ(1− ξ)η(1− η) 
= 0. We have

log f(ξ, η) = j log ξ + h log(1− ξ) + k log η + (j + q −m) log(1− η)

− (j + k −m) log(ξ − η)− (l + q) log(η − Z),

whence

1

f

∂f

∂ξ
=

∂

∂ξ
log f =

j

ξ
− h

1− ξ
− j + k −m

ξ − η
,

1

f

∂f

∂η
=

∂

∂η
log f =

k

η
− j + q −m

1− η
+

j + k −m

ξ − η
− l + q

η − Z
.
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Thus we seek the solutions of the system

(4.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j

ξ
− h

1− ξ
=

j + k −m

ξ − η

l + q

η − Z
− k

η
+

j + q −m

1− η
=

j + k −m

ξ − η
.

The first equation (4.2) yields η as a function of ξ:

(4.3) η = H(ξ) : = ξ
(h+m− k)ξ + k −m

(h+ j)ξ − j
,

with fixed points ξ = η = 0 and ξ = η = 1. Subtracting the equations (4.2) and
then substituting (4.3), we get a fourth degree equation in ξ.

The first step to apply the C2-saddle point method consists in solving either
the equation ∂f/∂ξ = 0 with respect to ξ, thus locally expressing ξ as a holo-
morphic function Ξ(η) of η in some open region Δ contained in the plane of the
complex variable η, or, interchanging the roles of ξ and η, the equation ∂f/∂η = 0
with respect to η. Since Z does not appear in the first equation (4.2), it is conve-
nient to solve ∂f/∂ξ = 0 with respect to ξ, i.e. to invert the function (4.3), thus
obtaining a suitable function ξ = Ξ(η) independent of Z.

The (global) inverse of (4.3) is a two-valued function ξ of η with branch points
at

η± =
h(j + k −m) + j(h+m− k)± 2

√
hj(h+m− k)(j + k −m)

(h+ j)2
,

corresponding through (4.3) to the solutions

ξ± =
j

h+ j
±

√
hj(h+m− k)(j + k −m)

(h+ j)(h+m− k)

of dH/dξ = 0, precisely such that

η+ = H(ξ+) and η− = H(ξ−).

We have η− < η+, with η− > 0 if and only if k 
= m, and ξ− < ξ+, with ξ− > 0
if and only if k < m.

If we set

ξ =
j

h+ j
+

√
hj(h+m− k)(j + k −m)

(h+ j)(h+m− k)
eiϑ (0 ≤ ϑ ≤ 2π),
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ξ describes the circumference of diameter [ξ−, ξ+]. Then the corresponding η =
H(ξ) given by (4.3) is easily seen to be

η =
h(j + k −m) + j(h+m− k)

(h+ j)2
+

√
hj(h+m− k)(j + k −m)

(h+ j)2
(eiϑ + e−iϑ)

=
h(j + k −m) + j(h+m− k) + 2

√
hj(h+m− k)(j + k −m) cosϑ

(h+ j)2
.

Thus the function (4.3) maps both the upper and the lower half-circumference of
diameter [ξ−, ξ+] onto the real interval [η−, η+].

The next step in applying the saddle point method, for each of the double
integrals (3.1), (2.14), (2.11) and (2.12) which we write here in the form

J
(0)
Z = ±

ζ∞∫
0

( 1∫
0

f(ξ, η)n
dξ

ξ − η

)
dη

η − Z
,(4.4)

K
(0)
Z = ±

∫
γ0,1

( 1∫
0

f(ξ, η)n
dξ

ξ − η

)
dη

η − Z
,(4.5)

J
(1)
Z = ± 1

2πi

∮
Γ0,1

( 1∫
0

f(ξ, η)n
dξ

ξ − η

)
dη

η − Z
,(4.6)

J
(2)
Z = ± 1

2πi

∮
|η−Z|=�1

(
1

2πi

∮
|ξ−η|=�2

f(ξ, η)n
dξ

ξ − η

)
dη

η − Z
,(4.7)

is to find:

(i) an open region Δ in the η-plane;

(ii) a stationary point (ξ∗, η∗) of f(ξ, η), with η∗ ∈ Δ, at which

(4.8)
∂2f

∂ξ2

= 0 and

∂2f

∂ξ2
∂2f

∂η2

=

(
∂2f

∂ξ ∂η

)2

;

(iii) a local inverse ξ = Ξ(η) of (4.3), holomorphic in Δ, with ξ∗ = Ξ(η∗),

such that the integration path for η can be transformed by Cauchy’s theorem into
a new integration path Γ ⊂ Δ passing through η∗, for which

(4.9) max
η∈Γ

|f(Ξ(η), η)| = |f(ξ∗, η∗)|,
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and the maximum on Γ is attained only at η = η∗.
As a final step, for any fixed η ∈ Γ we transform the integration path for

ξ, again applying Cauchy’s theorem, into a new integration path δη (in general
depending on η) passing through Ξ(η), so that

(4.10) max
ξ∈δη

|f(ξ, η)| = |f(Ξ(η), η)|,

and the maximum on δη is attained only at ξ = Ξ(η).
Then, by Hata’s theorem [Ha4, Section 1],

(4.11) lim
n→∞

1

n
log

∣∣∣∣ ∫
Γ

(∫
δη

f(ξ, η)n
dξ

ξ − η

)
dη

η − Z

∣∣∣∣ = log |f(ξ∗, η∗)|.

We remark that the saddle point method is not necessary for the integral (4.4)
if Z = z > 1, because in this case, going back to the coordinates x, y through the
inverse of (2.5), we have

J (0)
z = z(k−l−q)n

1∫
0

1∫
0

(
xj(1− x)h yk(1− y)l(
x(1− y) + yz

)j+k−m
(1− y+ yz)j+q−m

)n dx dy

x(1− y) + yz
.

Inside the unit square (0, 1)× (0, 1) the integrand is positive with one stationary
point, and vanishes on the boundary. Then the desired

lim
n→∞

1

n
log

∣∣J (0)
z

∣∣
is obtained by Laplace’s elementary asymptotic method. This yields

(4.12) lim
n→∞

1

n
log

∣∣∣∣
−∞∫
0

( 1∫
0

f(ξ, η)n
dξ

ξ − η

)
dη

η − z

∣∣∣∣ = log |f(ξ∗, η∗)|,

where (ξ∗, η∗) is the stationary point of f(ξ, η) with 0 < ξ∗ < 1 and η∗ < 0.

4.2

We show how to work out a concrete example. We choose the numerical values

(4.13) (h, j, k, l,m, q) = (37, 37, 22, 14, 23, 8).

With these values we have

(4.14) (h, j, k, l,m, q) = (j, h, j + q −m, l, h+ q − k, q),

whence, by the results in Subsection 2.3,

J (1)
z (37, 37, 22, 14, 23, 8) = −J

(1)
1−z(37, 37, 22, 14, 23, 8),(4.15)
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J (2)
z (37, 37, 22, 14, 23, 8) = J

(2)
1−z(37, 37, 22, 14, 23, 8),(4.16)

K(0)
z (37, 37, 22, 14, 23, 8) = K

(0)
1−z(37, 37, 22, 14, 23, 8)(4.17)

and

(4.18) J (0)
z (37, 37, 22, 14, 23, 8) + J

(0)
1−z(37, 37, 22, 14, 23, 8)

= K(0)
z (37, 37, 22, 14, 23, 8),

where, e.g., Im ζ > 0 in J
(0)
1−z and Im γ0,1 < 0 in K

(0)
z .

The function (4.3) becomes

(4.19) η = H(ξ) =
ξ

37
· 38ξ − 1

2ξ − 1
,

and we have

ξ± =
1

2
± 3

√
38

38
, η± =

1

2
± 3

√
38

37
.

In the plane of the complex variable ξ we define the following four open regions:

C1 = {Im ξ > 0, (Re ξ − 1/2)2 + (Im ξ)2 > 9/38},
D1 = {Im ξ < 0, (Re ξ − 1/2)2 + (Im ξ)2 > 9/38},
C2 = {Im ξ < 0, (Re ξ − 1/2)2 + (Im ξ)2 < 9/38},
D2 = {Im ξ > 0, (Re ξ − 1/2)2 + (Im ξ)2 < 9/38},

and in the plane of the complex variable η we define:

C = {Im η > 0},
D = {Im η < 0}.

An easy inspection of the orientations of the borders of the four regions above
in the ξ-plane, compared with the corresponding orientation of the real line in
the η-plane, shows that the function (4.19) is a one-to-one mapping of both C1

and C2 onto C, and of both D1 and D2 onto D.
We now choose

Z = z = 9.

Then the stationary points of fz(ξ, η) are:

(4.20)

(ξ0, η0) = (0.4761 . . . , −4.6067 . . . ),

(ξ1, η1) = (0.5231 . . .+ i 0.1540 . . . , 0.6278 . . .− i 0.6930 . . . ),

(ξ1, η1),

(ξ2, η2) = (23.0995 . . . , 12.1105 . . . ),
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and we have

(4.21)

log |fz(ξ0, η0)| = −95.8085 . . . ,

log |fz(ξ1, η1)| = −95.8741 . . . ,

log |fz(ξ2, η2)| = 227.2982 . . . .

At each of the stationary points (4.20) the inequalities (4.8) hold. By (4.12) we
have, for z = 9,

(4.22) lim
n→∞

1

n
log

∣∣∣∣
−∞∫
0

( 1∫
0

fz(ξ, η)
n dξ

ξ − η

)
dη

η − z

∣∣∣∣ = log |fz(ξ0, η0)|.

Owing to (4.15), (4.16) and (4.17), for the integrals K
(0)
Z , J

(1)
Z and J

(2)
Z we

require the C2-saddle point method only in the case Z = z > 1, i.e., Z = z = 9
with our choice. The simplest integral to deal with is the double contour integral

J
(2)
z given by (4.7). In this case we take

Δ = C ∪D ∪ (η+,+∞),

(ξ∗, η∗) = (ξ2, η2),

Ξ : Δ −→ C1 ∪D1 ∪ (ξ+,+∞),

Γ = {|η − z| = η2 − z}.
Then (4.9) holds, with the maximum attained only at η2. For every fixed η ∈ Γ ,
the function fz(ξ, η) vanishes at ξ = 1, and tends to infinity as ξ → ∞ or ξ → η.
Since ξ+ < 1, we have 1 ∈ Ξ(Δ). By the ordinary saddle point method in C,
there exists a contour δη enclosing η and passing through Ξ(η), which satisfies
(4.10) with the maximum on δη attained only at the saddle point ξ = Ξ(η). By
(4.11) we get, for Z = z = 9,

lim
n→∞

1

n
log

∣∣∣∣ 1

2πi

∮
|η−z|=�1

(
1

2πi

∮
|ξ−η|=�2

fz(ξ, η)
n dξ

ξ − η

)
dη

η − z

∣∣∣∣ = log |fz(ξ2, η2)|.

For the integral K
(0)
z in (4.5) with z = 9 and with, e.g., Im γ0,1 < 0, the

relevant stationary point is (ξ1, η1). We take

Δ = D,

(ξ∗, η∗) = (ξ1, η1),

Ξ : Δ −→ D2.
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Figure 1: Level curves |f9(Ξ(η), η)| = constant, and the path Γ = γ0,1 for K
(0)
9 .

For Γ we choose a path γ0,1 ⊂ D going from 0 to 1 and passing through η1, such
that (4.9) holds with the maximum attained only at η1. In the η-plane, the level
curves |fz(Ξ(η), η)| = constant, for several values of the constant around and
including |fz(ξ1, η1)|, are represented in Figure 1, where the integration path Γ =
γ0,1 is the dashed curve through the saddle point η1 of the function fz(Ξ(η), η).

The image Ξ(γ0,1) is an arc in D2 passing through ξ1 with endpoints 1/38
and 37/38. For every fixed η ∈ γ0,1, fz(ξ, η) vanishes at ξ = 0 and ξ = 1, and
tends to infinity as ξ → ∞ or ξ → η. By the saddle point method in C, there
exists a path δη from 0 to 1 in the upper half-plane Im ξ > 0, passing through
Ξ(η) and satisfying (4.10) with the maximum attained only at ξ = Ξ(η). By
(4.11) we obtain, for Z = z = 9,

(4.23) lim
n→∞

1

n
log

∣∣∣∣ ∫
γ0,1

( 1∫
0

fz(ξ, η)
n dξ

ξ − η

)
dη

η − z

∣∣∣∣ = log |fz(ξ1, η1)|.

For the remaining integrals J
(1)
z and J

(0)
1−z, the required asymptotic estimates
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are easily reduced to (4.22) and (4.23) by means of (2.15) and (2.16), with no
further applications of the saddle point method. From (2.15) we get∣∣J (1)

z

∣∣ =
1

π

∣∣ ImK(0)
z

∣∣ ≤ 1

π

∣∣K(0)
z

∣∣,
whence

lim sup
n→∞

1

n
log

∣∣J (1)
z

∣∣ ≤ lim
n→∞

1

n
log

∣∣K(0)
z

∣∣.
Therefore, by (4.23),

lim sup
n→∞

1

n
log

∣∣∣∣ 1

2πi

∮
Γ0,1

( 1∫
0

fz(ξ, η)
n dξ

ξ − η

)
dη

η − z

∣∣∣∣ ≤ log |fz(ξ1, η1)|.

By (2.16),

(4.24)
∣∣J (0)

1−z

∣∣ =
∣∣J (0)

z

∣∣ ∣∣∣∣1− K
(0)
z

J
(0)
z

∣∣∣∣.
From the values (4.21) we have |fz(ξ1, η1)| < |fz(ξ0, η0)|, whence, by (4.22) and
(4.23),

lim
n→∞

K
(0)
z

J
(0)
z

= 0.

Thus, by (4.24),

lim
n→∞

1

n
log

∣∣J (0)
1−z

∣∣ = lim
n→∞

1

n
log

∣∣J (0)
z

∣∣.
Hence, for any ζ with Im ζ 
= 0, we get by (4.22),

lim
n→∞

1

n
log

∣∣∣∣
ζ∞∫
0

( 1∫
0

f1−z(ξ, η)
n dξ

ξ − η

)
dη

η − (1− z)

∣∣∣∣ = log |fz(ξ0, η0)|.

Altogether we have, for the double integrals (4.4), (4.5), (4.6) and (4.7) with the
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values (4.13) and with z = 9,

lim
n→∞

1

n
log

∣∣J (0)
9

∣∣ = lim
n→∞

1

n
log |J9| = lim

n→∞
1

n
log

∣∣J (0)
−8

∣∣ = lim
n→∞

1

n
log |J−8|

= log |f9(ξ0, η0)| = −95.8085 . . . ,

lim
n→∞

1

n
log

∣∣K(0)
9

∣∣ = lim
n→∞

1

n
log

∣∣K(0)
−8

∣∣ = log |f9(ξ1, η1)| = −95.8741 . . . ,

lim sup
n→∞

1

n
log

∣∣J (1)
9

∣∣ = lim sup
n→∞

1

n
log

∣∣J (1)
−8

∣∣ ≤ log |f9(ξ1, η1)| = −95.8741 . . . ,

lim
n→∞

1

n
log

∣∣J (2)
9

∣∣ = lim
n→∞

1

n
log

∣∣J (2)
−8

∣∣ = log |f9(ξ2, η2)| = 227.2982 . . .

and, finally,

lim sup
n→∞

1

n
log |K9| ≤ −95.8741 . . .

on the basis of Lemma 2.6.

4.3

We summarise our discussion in Subsections 4.1 and 4.2 in the following form.

Proposition 4.1. For z > 1 and for a fixed set of positive integers h, j, k, l, m,
q such that j + k −m, j + q −m, h+m− k and h+ q − k are also positive, and
satisfying h = j and k +m = h+ q, i.e.,

(h, j, k, l,m, q) = (j, h, j + q −m, l, h+ q − k, q),

consider the four stationary points

(ξ0, η0) ∈ R2, 0 < ξ0 < 1, η0 < 0,

(ξ1, η1) ∈ C2, 0 < Re ξ1 < 1, 0 < Re η1 < 1,

(ξ1, η1) ∈ C2,

(ξ2, η2) ∈ R2, ξ2 > 1, η2 > 0,

solutions of the system (4.2). Define

c0 = − log |fz(ξ0, η0)|, c1 = − log |fz(ξ1, η1)| = − log |fz(ξ1, η1)|
and c2 = log |fz(ξ2, η2)|,
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where the function fz(ξ, η) is given by (4.1). If c0 < c1 we have the following
asymptotic formulae:

lim
n→∞

1

n
log

∣∣J (0)
z (hn, jn, kn, ln,mn, qn)

∣∣ =
lim
n→∞

1

n
log

∣∣J (0)
1−z(hn, jn, kn, ln,mn, qn)

∣∣ = −c0,

lim
n→∞

1

n
log

∣∣K(0)
z (hn, jn, kn, ln,mn, qn)

∣∣ =
lim
n→∞

1

n
log

∣∣K(0)
1−z(hn, jn, kn, ln,mn, qn)

∣∣ = −c1,

lim sup
n→∞

1

n
log

∣∣J (1)
z (hn, jn, kn, ln,mn, qn)

∣∣ =
lim sup
n→∞

1

n
log

∣∣J (1)
1−z(hn, jn, kn, ln,mn, qn)

∣∣ ≤ −c1,

lim
n→∞

1

n
log

∣∣J (2)
z (hn, jn, kn, ln,mn, qn)

∣∣ =
lim
n→∞

1

n
log

∣∣J (2)
1−z(hn, jn, kn, ln,mn, qn)

∣∣ = c2.

5 Arithmetic ingredients

5.1

Lemma 5.1. For a collection of real numbers γ1, . . . , γS, assume that we have
sequences of linear forms

r(μ)n = qnγμ − p(μ)n ∈ Zγμ + Z, μ = 1, . . . , S,

satisfying the following conditions:

(i) for some positive τ ,

lim sup
n→∞

log
∣∣r(S)n

∣∣
n

= −τ

and

lim sup
n→∞

log
∣∣r(μ)n

∣∣
n

< −τ for μ = 1, . . . , S − 1;

(ii) the numbers 1, γ1, . . . , γS−1 are linearly independent over Q.

Then the numbers 1, γ1, . . . , γS−1 and γS are linearly independent over Q.
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Proof. First of all, we introduce an ε > 0 to quantify the second part of condi-
tion (i):

lim sup
n→∞

log
∣∣r(μ)n

∣∣
n

≤ −τ − ε for μ = 1, . . . , S − 1.

Assume, on the contrary, that there is a linear form Λ = a0+a1γ1+· · ·+aSγS ,
with integer coefficients not all zero, such that Λ = 0. Write, for any n,

(5.1) qnΛ =
(
a0qn + a1p

(1)
n + · · ·+ aSp

(S)
n

)
+

(
a1r

(1)
n + · · ·+ aSr

(S)
n

)
.

The left-hand side of this equality is 0 and the expression a1r
(1)
n + · · · + aSr

(S)
n

on the right-hand side tends to 0 as n → ∞ by hypothesis (i). It follows that

a0qn + a1p
(1)
n + · · ·+ aSp

(S)
n = 0 for all n > n1, hence also

a1r
(1)
n + · · ·+ aS−1r

(S−1)
n + aSr

(S)
n = 0

for all n > n1 by (5.1). Dividing both sides of this equality by r
(S)
n and com-

puting the limit as n → ∞ along the subsequence of indices n for which
∣∣r(S)n

∣∣ >
exp

(
(−τ − ε/2)n

)
we obtain aS = 0, so that Λ = 0 translates into the relation

a0 + a1γ1 + · · ·+ aS−1γS−1 = 0.

By hypothesis (ii) this equality is only possible when a0 = a1 = · · · = aS−1 = 0,
implying now that all the coefficients of the linear form Λ are zero, a contradiction
with our assumption on Λ.

We briefly comment about how we use the lemma in the next section. Our
choice will be S = 3,

γ1 = Li1(1/z), γ2 =
1
2 Li1(1/z)

2 = −Li2(1/z)−Li2(1/(1− z)), γ3 = Li2(1/z),

so that condition (ii) is met. In addition, by Proposition 4.1, hypothesis (i) will
be satisfied.

To derive estimates for the linear independence measure we will use the fol-
lowing extension of the arithmetical lemma established by Hata in [Ha2, Lemma
2.1] in the case S = 2. In his recent work [Ma], R. Marcovecchio extends this
result to cover the following general S situation.

Lemma 5.2 ([Ma, Lemma 7.1]). For a collection of real numbers γ1, . . . , γS which
are linearly independent with 1 over Q, assume that we have sequences of linear
forms

r(μ)n = qnγμ − p(μ)n , μ = 1, . . . , S,
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where qn, p
(μ)
n ∈ Z + i

√
dZ for a fixed integer d ≥ 0, satisfying the following

condition:

For some positive σ and τ ,

lim
n→∞

log |qn|
n

= σ and lim sup
n→∞

log
∣∣r(μ)n

∣∣
n

≤ −τ for μ = 1, . . . , S.

Then for any ε > 0 and any (S + 1)-tuple

(a0, a1, . . . , aS) ∈ ZS+1, (a0, a1, . . . , aS) 
= (0, 0, . . . , 0),

we have
|a0 + a1γ1 + · · ·+ aSγS | > C(ε)A−σ/τ−ε,

where A = max{|a0|, . . . , |aS |} and the constant C(ε) > 0 does not depend on the
tuple.

5.2

Marcovecchio’s lemma suffices for our application, and the (short) discussion be-
low is to set an alternative approach which may be applicable in a situation where
only estimates for upper limits are known:

lim sup
n→∞

log |qn|
n

≤ σ and lim sup
n→∞

log
∣∣r(μ)n

∣∣
n

≤ −τ for μ = 1, . . . , S.

In order to make the standard Siegel-type argument work in this case, it suffices
to have an N ≥ S + 1 such that, for all sufficiently large n, the rank of the
N × (S + 1) matrix (

qn+i, p
(1)
n+i, . . . , p

(S)
n+i

)
0≤i≤N−1

is full (that is, equal to S + 1); then there is at least one row satisfying

pn+i = a0qn+i + a1p
(1)
n+i + · · ·+ aSp

(S)
n+i 
= 0

for any given nontrivial form Λ = a0 + a1γ1 + · · · + aSγS . The fact that pn 
= 0
for infinitely many indices n already follows from the linear independence of
1, γ1, . . . , γS ; indeed, if pn = 0 for all sufficiently large n, then taking the limit
in (5.1) shows that Λ = 0, which is not possible. Verifying that pn 
= 0 holds
“sufficiently often” is subtler. To establish this we can use the fact that our
construction guarantees that all the sequences involved are P -recursive (or holo-
nomic) over Q, that is, each sequence satisfies (its own) linear recurrence equation
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with polynomial coefficients from Q[n]. In our settings, this follows from the Fun-
damental Corollary in [WZ, Section 2.1] that, given a fixed collection of positive
rationals h, j, k, l,m, q such that j + k − m > 0, j + q − m > 0, and a rational
Z 
= 0, the sequences of integrals

J
(μ)
Z (hn, jn, kn, ln,mn, qn) (μ = 0, 1, 2), where n = 1, 2, 3, . . . ,

are P -recursive (or holonomic) over Q. Moreover, the paper [WZ] provides one
with an algorithm to compute the recurrence equations for each particular choice
of the parameters, and even with an explicit estimate for the order of the recur-
sions.

The following lemma is an immediate consequence of the fact that the set of
holonomic sequences over a field K is a ring.

Lemma 5.3. Given P -recursive sequences p
(1)
n , . . . , p

(r)
n over K, exactly one of

the following options holds: either

(i) there exists a collection of numbers a1, . . . , ar ∈ K such that a1p
(1)
n + · · · +

arp
(r)
n = 0 for all n > n0, or

(ii) there is an integer N ≥ r such that the rank of the N × r matrix(
p
(1)
n+i, . . . , p

(r)
n+i

)
0≤i≤N−1

is full for any n > n0.

Proof. Consider the P -recursive sequence

pn = det
(
p
(μ)
n+i−1

)
1≤i,μ≤r

and denote by M the order of a linear recurrence equation it satisfies. If pn = 0
for all sufficiently large n, we arrive at option (i). If this does not happen, then at
least one of pn, pn+1, . . . , pn+M must be nonzero for all n > n0; the latter implies
option (ii) with the choice N = M + r.

It is this lemma and the fact that option (i) is already excluded that allow us
to deduce the fullness of the rank of the N × (S + 1) matrix above.

Remark. In practice, we normally deal with a collection of sequences p̃
(μ)
n =

λnp
(μ)
n , where the sequences p

(μ)
n are holonomic (μ = 1, . . . , r), while a nonzero

sequence λn serves to ‘correct’ the arithmetic of the latter (for example, to have

the sequences p̃
(μ)
n to be integer-valued, rather than rational-valued). The state-

ment of Lemma 5.3 remains valid for the modified sequences p̃
(1)
n , . . . , p̃

(r)
n , because

the vanishing of a1p
(1)
n + · · ·+ arp

(r)
n and of a1p̃

(1)
n + · · ·+ arp̃

(r)
n are equivalent.
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6 Linear independence

6.1

Let h, j, k, l, m, q > 0 be fixed integers satisfying j + k − m, j + q − m,
h + m − k, h + q − k > 0, h = j and k + m = h + q, and let H, H ′, α, β, δ
be defined as in Proposition 3.1. We consider the integrals J

(μ)
Z (μ = 0, 1, 2) and

K
(0)
Z (with Z = z > 1 or Z = 1 − z < 0) where, as in Section 4, we take the

parameters to be hn, jn, kn, ln, mn, qn, with the integer n varying from 1 to
∞. Following the strategy of [RV, Section 4], we use Proposition 3.1 to make
the arithmetical correction of the corresponding polynomials Q(z), P1(z), P2(z),
P (z), R(z) ∈ Z[z]. Namely, taking

(6.1) Ω = {ω ∈ [0, 1) : [(h+m− k)ω] + [(j + k −m)ω] < [hω] + [jω] }
and applying the arguments in [RV, pp. 418–420] we conclude that

Δ−1
n Q(z), Δ−1

n P1(z), Δ
−1
n P2(z), Δ

−1
n P (z), Δ−1

n R(z) ∈ Z[z],

where
Δn =

∏
p>

√
Hn

{n/p}∈Ω

p.

Note that all the above polynomials have degrees not exceeding

δn = (α+ β + h+ j − l)n.

For a rational z = s/r > 1, let

c3 = H +H ′ + α log z + β log(z − 1) + δ log r −
∫
Ω

dψ(x)

= H +H ′ + α log s+ β log(s− r) + (h+ j − l) log r −
∫
Ω

dψ(x),

where ψ(x) is the logarithmic derivative of the Euler gamma-function. Applying
Propositions 3.1 and 4.1, Lemma 5.1 and Lemma 5.2 with d = 0 to the linear
forms

r(1)n = Δ−1
n dHndH′nz

αn(1− z)βnrδnJ (1)
z ∈ Z Li1(1/z) + Z,

r(2)n = Δ−1
n dHndH′nz

αn(1− z)βnrδnKz ∈ Z 1
2 Li1(1/z)

2 + Z,

r(3)n = Δ−1
n dHndH′nz

αn(1− z)βnrδnJz ∈ Z Li2(1/z) + Z,

we arrive at the following general result.
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Proposition 6.1. For a fixed rational z = s/r > 1 and for a fixed set of positive
integers h, j, k, l, m, q such that j + k−m, j + q−m, h+m− k and h+ q− k
are also positive, and satisfying h = j and k +m = h+ q, define c0, c1, c2 as in
Proposition 4.1 and c3 as above. Then if c3 < c0 < c1, the numbers

1, Li1(1/z), Li2(1/z) and Li2(1/(1− z))

are linearly independent over Q. Furthermore, for any ε > 0 and any quadruple
(a0, a1, a2, a3) ∈ Z4 \ {0} we have

|a0 + a1 Li1(1/z) + a2 Li2(1/z) + a3 Li2(1/(1− z))| > C(ε)A−(c2+c3)/(c0−c3)−ε,

where A = max{|a0|, |a1|, |a2|, |a3|} and the constant C(ε) > 0 does not depend
on the quadruple.

6.2

Here is some arithmetical analysis of the particular case (4.13), with r = 1 and
z = s ≥ 9. We have H = 60, H ′ = 38, α = β = 0, while the permutation ϕ
allows us to eliminate the set of primes p for which the fractional parts of n/p
belong to the set (6.1), i.e., to the following union:

Ω =
[
1
37 ,

1
36

) ∪ [
2
37 ,

1
18

) ∪ [
3
37 ,

1
12

) ∪ [
4
37 ,

1
9

) ∪ [
5
37 ,

5
36

) ∪ [
6
37 ,

1
6

)
∪ [

7
37 ,

7
36

) ∪ [
8
37 ,

2
9

) ∪ [
9
37 ,

1
4

) ∪ [
10
37 ,

5
18

) ∪ [
11
37 ,

11
36

) ∪ [
12
37 ,

1
3

)
∪ [

13
37 ,

13
36

) ∪ [
14
37 ,

7
18

) ∪ [
15
37 ,

5
12

) ∪ [
16
37 ,

4
9

) ∪ [
17
37 ,

17
36

) ∪ [
18
37 ,

1
2

)
∪ [

19
37 ,

10
19

) ∪ [
20
37 ,

21
38

) ∪ [
21
37 ,

11
19

) ∪ [
22
37 ,

23
38

) ∪ [
23
37 ,

12
19

) ∪ [
24
37 ,

25
38

)
∪ [

25
37 ,

13
19

) ∪ [
26
37 ,

27
38

) ∪ [
27
37 ,

14
19

) ∪ [
28
37 ,

29
38

) ∪ [
29
37 ,

15
19

) ∪ [
30
37 ,

31
38

)
∪ [

31
37 ,

16
19

) ∪ [
32
37 ,

33
38

) ∪ [
33
37 ,

17
19

) ∪ [
34
37 ,

35
38

) ∪ [
35
37 ,

18
19

) ∪ [
36
37 ,

37
38

)
.

This yields
c3 = 60 + 38− 4.030167 . . . = 93.969832 . . . ,

and on combining with our earlier computation of

c0 = 95.808510 . . . , c1 = 95.874154 . . . and c2 = 227.298288 . . .

for z = 9, we arrive at the linear independence over Q of 1, Li1(1/9), Li2(1/9)
and Li2(−1/8), with the corresponding measure bounded from above by

c2 + c3
c0 − c3

= 174.727780 . . . .
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z
(h
,j
,k
,l
,m

,q
)

c 0
c 1

c 2
c 3

c 2
+

c 3
c 0

−
c 3

9
(3
7
,3
7
,2
2
,1
4
,2
3
,8
)

95
.8
0
..
.

95
.8
7
..
.

22
7.
29

..
.

9
3
.9
6
..
.

1
7
4.
7
2
7
7
8
..
.

10
(3
9
,3
9
,2
3
,1
5
,2
4
,8
)

10
2.
82

..
.

10
3.
17

..
.

24
5.
76

..
.

9
8
.9
1
..
.

8
8
.2
2
7
9
3
9
..
.

11
(2
6
,2
6
,1
5
,1
0
,1
6
,5
)

69
.1
8
..
.

69
.5
0
..
.

16
7.
58

..
.

6
5
.3
2
..
.

6
0
.4
4
3
0
7
1
..
.

12
(4
0
,4
0
,2
3
,1
6
,2
4
,7
)

10
8.
79

..
.

10
8.
79

..
.

26
1.
95

..
.

1
0
0.
8
9
..
.

4
5
.9
3
7
7
6
5
..
.

13
(4
2
,4
2
,2
4
,1
7
,2
5
,7
)

11
5.
77

..
.

11
5.
86

..
.

27
9.
89

..
.

1
0
5.
8
4
..
.

3
8
.8
3
3
2
9
6
..
.

14
(3
2
,3
2
,1
8
,1
3
,1
9
,5
)

88
.9
2
..
.

88
.9
3
..
.

21
6.
65

..
.

8
0
.1
1
..
.

3
3
.6
9
9
5
3
8
..
.

15
(2
7
,2
7
,1
5
,1
1
,1
6
,4
)

75
.6
1
..
.

75
.6
2
..
.

18
5.
52

..
.

6
7
.2
8
..
.

3
0
.3
5
0
0
6
9
..
.

16
(4
1
,4
1
,2
3
,1
7
,2
4
,6
)

11
6.
73

..
.

11
6.
97

..
.

28
5.
50

..
.

1
0
2.
8
6
..
.

2
7
.9
9
3
1
5
4
..
.

17
(3
6
,3
6
,2
0
,1
5
,2
1
,5
)

10
3.
29

..
.

10
3.
43

..
.

25
3.
75

..
.

8
9
.9
9
..
.

2
5
.8
5
3
9
1
4
..
.

18
(4
5
,4
5
,2
5
,1
9
,2
6
,6
)

13
0.
65

..
.

13
0.
78

..
.

32
0.
61

..
.

1
1
2.
7
7
..
.

2
4
.2
3
6
0
1
1
..
.

19
(3
1
,3
1
,1
7
,1
3
,1
8
,4
)

90
.2
5
..
.

90
.4
1
..
.

22
3.
55

..
.

7
7
.1
4
..
.

2
2
.9
4
7
4
8
5
..
.

20
(4
9
,4
9
,2
7
,2
1
,2
8
,6
)

14
4.
72

..
.

14
4.
74

..
.

35
6.
17

..
.

1
2
2.
6
8
..
.

2
1
.7
2
5
8
4
1
..
.

21
(5
8
,5
8
,3
2
,2
5
,3
3
,7
)

17
2.
85

..
.

17
3.
06

..
.

42
5.
73

..
.

1
4
5.
5
1
..
.

2
0
.8
9
3
7
2
9
..
.

22
(3
5
,3
5
,1
9
,1
5
,2
0
,4
)

10
4.
39

..
.

10
4.
42

..
.

25
9.
37

..
.

8
7
.0
2
..
.

1
9
.9
4
0
9
4
3
..
.

23
(4
4
,4
4
,2
4
,1
9
,2
5
,5
)

13
2.
52

..
.

13
2.
72

..
.

32
8.
90

..
.

1
0
9.
7
9
..
.

1
9
.2
9
8
0
6
9
..
.

T
ab

le
1:

T
h
e
la
st

co
lu
m
n
re
p
ro
d
u
ce
s
th
e
es
ti
m
a
te

fr
o
m

a
b
ov
e
fo
r
th
e
li
n
ea
r
in
d
ep

en
d
en

ce
m
ea
su
re

ov
er

Q
o
f
1
,

L
i 1
(1
/z

),
L
i 2
(1
/z

)
an

d
L
i 2
(1
/(
1
−

z
))
.

z
(h
,j
,k
,l
,m

,q
)

c 0
c 1

c 2
c 3

c 2
+

c 3
c 0

−
c 3

14
3/

2
(5
8,
58

,3
0
,2
7
,3
1
,3
)

20
5
.3
1
..
.

20
5
.3
7
..
.

52
6.
9
5
..
.

2
0
5.
2
0
..
.

6
9
4
0
.3
6
6
0
..
.

74
2/

3
(8
9,
89

,4
5
,4
3
,4
6
,2
)

36
8
.4
7
..
.

36
8
.5
1
..
.

96
8.
2
6
..
.

3
6
8.
3
9
..
.

1
6
3
0
6.
6
3
9
..
.

23
55

/4
(1
5
9
,1
59
,8
0
,7
8
,8
1
,2
)

72
7
.2
3
..
.

72
7
.2
6
..
.

19
30

.8
7
..
.

7
2
7.
2
1
..
.

1
2
2
1
4
7.
4
7
..
.

T
ab

le
2:

L
in
ea
r
in
d
ep

en
d
en
ce

ov
er

Q
of

1,
L
i 1
(1
/z

),
L
i 2
(1
/z

)
an

d
L
i 2
(1
/(
1
−

z
))

w
h
en

z
>

1
is

n
o
n
-i
n
te
g
ra
l.
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In Table 1 we summarise our numerical results for the integers z in the range
9 ≤ z ≤ 23. Note that our choice of parameters there follows the pattern

(h, j, k, l,m, q) = (j, j, k, j − k − 1, k + 1, 2k − j + 1),

so that H = j + k + 1, H ′ = j + 1 and α = β = 0.
For any integer z ≥ 24 we take (h, j, k, l,m, q) = (9, 9, 5, 4, 5, 1), so that H =

14, H ′ = 9, α = β = 0 and Ω = ∅, whence c3 = H + H ′ = 23. Then c1 >
c0 > 27.625757 and c2 < 67.623222, and we get a linear independence measure
bounded from above by

c2 + c3
c0 − c3

< 19.6 .

Table 2 contains some results for rational z = s/r, 1 < r < s, where s is
chosen to be least possible for each denominator r = 2, 3, 4 to obtain the linear
independence result in Proposition 6.1.

6.3

The construction in this paper allows one to single out the approximations to
Li1(1/z) and Li2(1/z), without considering Li2(1/(1− z)). Then it can be shown
(also in a quantitative form) that, for integer z ≥ 7 (hence z ≤ −6 as well), the
numbers 1, Li1(1/z) and Li2(1/z) are linearly independent over Q. These results
are weaker than the ones given in [RV] and therefore are not discussed here.
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